

ROTEIRO DE ORIENTAÇÃO DE ESTUDOS DE RECUPERAÇÃO

Ensino Médio - 2023

Professora: Helika Chikuchi	Disciplina: BIOLOGIA	Série: 3ª
Aluno(a):		Nº

I. Apresentação

Este documento apresenta as atividades que deverão ser feitas por você, com o objetivo de prepará-lo(a) para a avaliação, que é parte da Orientação de Estudos de Recuperação. Espera-se que durante a sua preparação sejam resgatados alguns dos conceitos mais significativos desenvolvidos durante o segundo semestre. Lembre-se de rever não apenas o seu caderno, mas também os materiais disponíveis na plataforma GSA (Google Sala de Aula).

II. Objetivos Específicos desta recuperação

Espera-se que você:

- utilize corretamente o vocabulário específico da Biologia para se expressar;
- compreenda e utilize os conceitos de códon e anticódon;
- resolva problemas envolvendo replicação, transcrição e tradução gênica;
- seja capaz de utilizar a tabela de Código Genético na resolução de exercícios.

III. Assuntos que serão abordados no roteiro

Ácidos nucleicos e Síntese de Proteínas:

- DNA e RNA: nucleotídeos, replicação semiconservativa e transcrição;
- Tradução: códon, anticódon e código genético.

IV. Material básico de estudo

- Materiais (apresentações e atividades) disponíveis na plataforma GSA (Google Sala de Aula);
- Caderno de Biologia;
- Conteúdos do site www.planetabio.com (opcional).

1. Orientações sobre a apresentação das Atividades de Recuperação

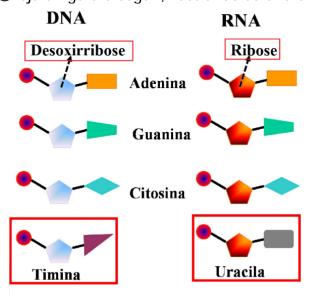
- As respostas discursivas do roteiro devem ser digitadas;
- O roteiro deve apresentar **capa**, com título ("Roteiro de Orientação de Estudos de Biologia"), nome, número, série e data da entrega;
- Utilize fonte Times New Roman 12 e espaçamento 1,5 para o texto;
- Planeje o que vai escrever, esquematizar ou desenhar previamente: elabore as atividades solicitadas com atenção, organização e capricho;
- Faça a revisão do texto, atentando também para a correção ortográfica e gramatical.

VI. Critérios de Avaliação

- Frequência às aulas de Recuperação;
- Empenho na realização das atividades durante as aulas de Recuperação;
- Entrega do Roteiro com as atividades propostas realizadas;
- Desempenho na Prova de Recuperação.

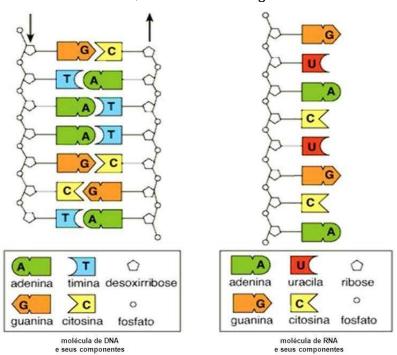
VII. Atividades a serem realizadas

O conteúdo deste roteiro está relacionado com as bases da "Genética Molecular", ou seja, com a estrutura e propriedades do DNA e dos RNAs, a relação entre a sequência de nucleotídeos do DNA, o código genético e a síntese de proteína.


Ácidos nucleicos (DNA e RNA) e Síntese de Proteínas

O ácido desoxirribonucleico (DNA ou ADN) e o ácido ribonucleico (RNA ou ARN) são substâncias classificadas como ácidos nucleicos.

As duas estão relacionadas com as informações genéticas: o DNA contém os genes, que são instruções para a síntese de todas as proteínas de um ser vivo; o RNA, que se apresenta como RNA mensageiro, RNA ribossômico e RNA transportador, participa da "montagem" dessas proteínas, transportando e agregando na sequência correta, os aminoácidos que farão parte de cada proteína. As duas moléculas – DNA e RNA – são formadas por unidades que são denominadas nucleotídeos.


Os nucleotídeos de DNA e os de RNA são bastante semelhantes: são constituídos por um grupo fosfato, uma pentose e uma base nitrogenada, todavia, diferem no tipo de pentose que apresentam (desoxirribose no DNA e ribose, no RNA) e em uma das bases nitrogenadas (timina é exclusiva do DNA e uracila, do RNA).

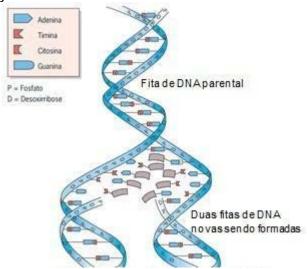
eja a figura a seguir, ilustrando as diferenças entre DNA e RNA.

A figura acima esquematiza a estrutura dos nucleotídeos de DNA e de RNA. Note que as bases nitrogenadas Adenina, Guanina e Citosina estão presentes nos dois ácidos nucleicos.

Além dessas diferenças nos nucleotídeos, também há diferenças entre as moléculas de DNA e de RNA, como ilustra a figura abaixo.

A figura acima ilustra as principais diferenças entre as moléculas de DNA e de RNA.

A molécula de DNA é uma dupla-hélice constituída por duas fitas (ou filamentos ou, ainda, hélices) que estão unidas por ligações do tipo pontes de hidrogênio que se formam entre as bases complementares: Adenina (A) de uma fita se liga com Timina (T) da fita complementar; Citosina (C) de uma fita se liga com a Guanina (G) da fita complementar.


Já no caso do RNA, todos os 3 tipos (RNA mensageiro, RNA ribossômico e RNA transportador) são formados por uma **hélice simples**, ou seja, apenas por um filamento.

Atividade 1: Primeira propriedade do DNA – a Replicação (ou Autoduplicação)

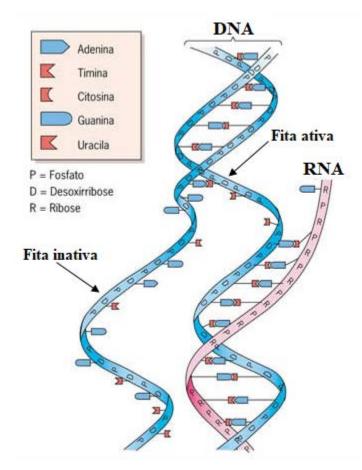
O DNA tem capacidade de se autoduplicar formando duas cópias idênticas à molécula original.

Esse processo é chamado de **replicação** e é **semiconservativo**, isto é, em cada uma das duas moléculas produzidas haverá uma fita inteira proveniente da molécula de DNA original. Essa fita atua como uma fita molde, a qual orienta a construção de uma fita complementar.

Veja na figura a seguir:

Esquema simplificado do processo de replicação: a enzima helicase rompe as pontes de hidrogênio que unem as duas fitas de DNA; uma vez separadas, a enzima DNA polimerase complementa as duas fitas da molécula original, encaixando nucleotídeos complementares. O processo é semiconservativo.

Agora faça o seguinte exercício: A sequência abaixo representa os nucleotídeos do fragmento da fita ativa (ou fita molde) de uma molécula de DNA que está se replicando. Escreva qual é a sequência dos nucleotídeos da fita complementar:


ATC GGC TTA CTA CGC

Atividade 2: Segunda propriedade do DNA – a Transcrição (ou síntese de RNA)

Durante a transcrição, apenas o trecho de uma das fitas do DNA será utilizada para orientar a produção de uma molécula de RNA.

Esse trecho do DNA corresponde a um gene e contém as informações ou "receita" necessário para a síntese de alguma proteína que a célula está precisando produzir.

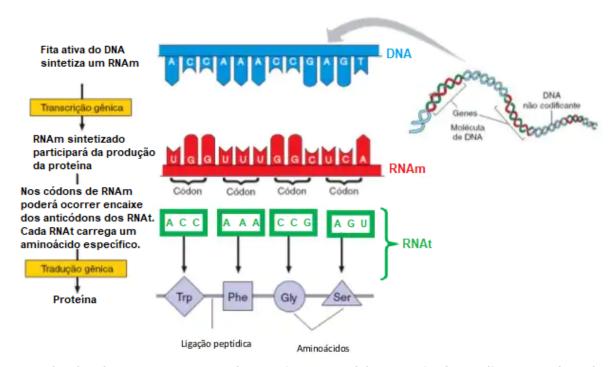
Damos o nome de fita ativa ou fita molde para a que será transcrita; a outra fita do DNA, que não sofrerá transcrição, será denominada de fita inativa ou fita complementar. A figura abaixo esquematiza como é o processo de transcrição:

Durante a transcrição, a enzima RNA polimerase rompe as pontes de hidrogênio das duas fitas complementares de DNA, apenas no trecho que sofrerá transcrição. A seguir, a mesma enzima promoverá o encaixe de nucleotídeos de RNA seguindo a orientação da fita ativa: onde houver T na fita ativa, ocorrerá encaixe de A na RNA que está sendo produzido; onde houver C, entrará G; onde houver adenina, entrará uracila, visto que não há nucleotídeo timina no RNA.

Responda agora a seguinte questão: Suponha que o trecho da molécula de DNA a seguir sofrerá transcrição e que a fita ativa seja a que está indicada pela seta.

Qual será a sequência de nucleotídeos do RNA que será transcrito (ou seja, produzido)?

Atividade 3: A Tradução (síntese de proteínas)


A tradução gênica consiste na montagem de um peptídeo (proteínas são polipeptídeos), a partir da instrução presente no RNA mensageiro, a qual orienta a sequência em que os aminoácidos deverão ser adicionados.

Esse processo depende dos ribossomos (que são resultantes da associação de moléculas de RNA ribossômico com proteínas) e dos RNA transportadores (que são moléculas que podem capturar aminoácidos livres e levá-los até o RNA mensageiro.

Esse processo está descrito na apresentação utilizada durante as aulas (disponível na plataforma GSA) e também no site "PlanetaBio".

É importante, para que consiga resolver os exercícios com segurança, que revise os conceitos de códon, anticódon e que se lembre da sequência de todas as etapas até o final da tradução.

A figura a seguir indica – muito simplificadamente - a sequência de todas essas etapas, desde a replicação do DNA até o fim da tradução:

As moléculas de RNAt apresentam duas regiões: uma delas, o anticódon se liga aos códons do RNAm (desde que as bases do códon do RNAm e as bases do anticódon do RNAt sejam

complementares, conforme mostra a imagem). O anticódon do RNAt determina qual aminoácido ele poderá transportar. Na imagem vemos que o RNAt com anticódon ACC transporta o aminoácido Trp (triptofano).

Para você poder descobrir qual é a sequência dos aminoácidos de uma proteína que será sintetizada a partir da fita ativa de uma molécula de DNA, você precisará usar os dados fornecidos por uma tabela do Código Genético, como a disponível na atividade 4.

Atividade 4: A seguinte sequência de bases nitrogenadas representa um trecho de uma molécula de RNAm:

UGC UAU GCC AGC AAA

- a) Determine o terceiro códon da fita ativa de DNA que transcreveu esse RNAm.
- b) Se esse RNAm sofrer tradução, quais serão o primeiro e o quarto anticódons dos RNAt que se encaixarão nele?
- c) Utilize a tabela do código genético abaixo e determine a sequência dos aminoácidos da proteína que será produzida.

Tabela do Código Genético com os códons e os aminoácidos correspondentes:

Primeira	Segunda base				
base	U	С	Α	G	base
	UUU } Fen	ບດດ)	UAU) Tir	UGU) Cis	U
U	OUC (Len	UCC Ser	UAC]	UGCJ	С
	UUA } Leu	UCA CO.	UAA Fim	UGA Fim	Α
	UUG J LEU	UCGJ	UAG	UGG Trp	G U
	CUU)	CCU)	CAU)	CGU	
C	cuc Leu	ccc Pro	CAC His	CGC	С
	CUA	CCA	CAA1	CGA Arg	Α
	CUG	CCG	CAG GIn	cgg)	G
	AUU	ACU	ΔΔΙΙ	AGU Ser	U
	AUC Ile	ACC T	AAC Ans	AGC) Sei	С
A	AUA	ACA Tre	AAA} Lis	AGAL Ara	Α
	AUG Met	ACG	AAG) LIS	AGG Arg	G
	GUU)	GCU)	GAU) Acp	GGU	U
	GUC (Val	GCC	GAC Asp	GGC(CII	С
G	GUA Val	GCA Ala	GAA Glu	GGA Gli	Α
	GUG)	GCG)	GAG GIU	GGG)	G

- d) Explique o que é o Código Genético e por que os cientistas dizem que ele é **universal**.
- e) Por que dizemos que o Código Genético é degenerado?

Atividade 5: As sequências de RNA mensageiro a seguir codificam peptídeos com atividades biológicas específicas. Suponha que mutações no DNA tenham causado as seguintes mudanças nas duas moléculas de mRNA (1 e 2).

Molécula 1:

UCU GU<u>U</u> AUU UAU UCU → UCU GU<u>C</u> AUU UAU UCU

Molécula 2:

GCU CAU AG<u>A</u> GAU GGU → GCU CAU AG<u>C</u> GAU GGU

A tabela resumida do código genético mostra alguns códons e seus aminoácidos correspondentes.

códon	aminoácido	códon	aminoácido
GUU	valina	AGU	serina
GUC	valina	AGC	serina
GUA	valina	AGA	arginina
GUG	valina	AGG	arginina

Em qual das mudanças (1 ou 2) há risco de perda ou de diminuição da atividade biológica? Justifique sua resposta.